

The Semi-Analytic Galaxy Evolution (SAGE)

This is the documentation for the Semi-Analytic Galaxy Evolution model.
SAGE was original developed by Darren Croton and is a significant update
to the model described in Croton et al., 2006 [https://arxiv.org/abs/astro-ph/0508046]. The updated SAGE model is described
Croton et al., 2016 [https://arxiv.org/abs/1601.04709]. The code is publicly available and can be found on
Github [https://github.com/sage-home/sage-model].

Citation

If you use SAGE in a publication, please cite the following:

@ARTICLE{2016ApJS..222...22C,
 author = {{Croton}, D.~J. and {Stevens}, A.~R.~H. and {Tonini}, C. and
 {Garel}, T. and {Bernyk}, M. and {Bibiano}, A. and {Hodkinson}, L. and
 {Mutch}, S.~J. and {Poole}, G.~B. and {Shattow}, G.~M.},
 title = "{Semi-Analytic Galaxy Evolution (SAGE): Model Calibration and Basic Results}",
 journal = {\apjs},
 archivePrefix = "arXiv",
 eprint = {1601.04709},
 keywords = {galaxies: active, galaxies: evolution, galaxies: halos, methods: numerical},
 year = 2016,
 month = feb,
 volume = 222,
 eid = {22},
 pages = {22},
 doi = {10.3847/0067-0049/222/2/22},
 adsurl = {http://adsabs.harvard.edu/abs/2016ApJS..222...22C},
 adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Maintainers

	Jacob Seiler (@jacobseiler [https://github.com/jacobseiler])

	Manodeep Sinha (@manodeep [https://github.com/manodeep])

	Darren Croton (@darrencroton [https://github.com/darrencroton])

	user-docs

	API Reference

User Documentation

	Introduction
	Why Use SAGE?

	Getting Started
	Pre-Requisites

	Downloading

	Building

	HDF5 Support

	Example Usage

	Plotting SAGE Results
	Installation

	Example Usage

	Defining Custom Plot Toggles

API Reference

	Comprehensive API reference
	sage_analysis package

Introduction

SAGE is a publicly available code-base for modelling galaxy formation in a
cosmological context. A description of the model and its default calibration
results can be found in Croton et al. (2016) [https://arxiv.org/abs/1601.04709].
SAGE is a significant update to that previously used in Croton et al. (2006) [http://arxiv.org/abs/astro-ph/0508046].

SAGE is written in C and was built to be modular and customisable.
It will run on any N-body simulation whose trees are organised in a supported format and contain a minimum set of basic halo properties.
For testing purposes, treefiles for the mini-Millennium Simulation [http://arxiv.org/abs/astro-ph/0504097] are available
here [https://data-portal.hpc.swin.edu.au/dataset/mini-millennium-simulation].

Galaxy formation models built using SAGE on the Millennium, Bolshoi and simulations can be downloaded at the
Theoretical Astrophysical Observatory (TAO) [https://tao.asvo.org.au/]. You can also find SAGE on ascl.net [http://ascl.net/1601.006].

Why Use SAGE?

Getting Started

Pre-Requisites

SAGE should compile on most systems out of the box and the only required tool is a C99 compiler [https://en.wikipedia.org/wiki/C99].
GSL [http://www.gnu.org/software/gsl] is recommended but not necessary.

Downloading

SAGE can be installed by cloning the GitHub repository:

$ git clone https://github.com/sage-home/sage-model
$ cd sage-model/

Building

To create the SAGE executable, simply run the following command:

$ make

SAGE is MPI compatible which can be enabled setting USE-MPI = yes in
the Makefile. To run in parallel, ensure that you have a installed an MPI distribution (OpenMPI, MPICH, Intel MPI etc).
When compiling with MPI support, the Makefile expects that the MPI compiler is called mpicc and is configured appropriately.

HDF5 Support

SAGE supports reading and writing in `HDF5`_. We recommend writing your output
data in HDF5 for ease-of-use. To easily handle your HDF5 installation, we also
recommend using Conda [https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html].

$ conda install -q --yes -c conda-forge hdf5

HDF5 support can be enabled by setting USE-HDF5 = yes in the Makefile.
Adjust the tree_type and OutputFormat in your SAGE parameter file
to allow reading/writing of HDF5 files.

Example Usage

SAGE runs on dark matter halo merger trees constructed in a vertical format.
The trees for the Mini-Millennium dark matter simulation (a smaller box size
version of the Millennium simulation with identical mass resolution) can be
retrieved by executing the first_run.sh script from within the
sage-model directory. This will create the necessary file structure and parameter
file required for running SAGE.

$./first_run.sh

After this, the model can be run using:

$./sage input/millennium.par

or in parallel as:

$ mpirun -np <NUMBER_PROCESSORS> ./sage input/millennium.par

Plotting SAGE Results

Installation

We have created a small analysis package (sage_analysis) to provide greater flexibility in the
plotting options for SAGE. Indeed, this package is highly customizable and
we recommend using it for a variety of projects! It can be locally installed
via:

$ cd sage-model/
$ pip install . (--user)

Example Usage

In the plotting

In the analysis directory are a number of Python scripts to read and parse
the SAGE output. The most important file is example.py which creates
plots for the default Mini-Millennium galaxies.

$ cd analysis/
$ python example.py

and will create a number of useful diagnostic plots in the analysis/plots
directory.

We also include the ability to compare the properties of a number of different
models. See the documenation in the __main__ function call of example.py to use this functionality.

Defining Custom Plot Toggles

Comprehensive API reference

	sage_analysis package
	Submodules

	sage_analysis.model module

	sage_analysis.sage_binary module

	sage_analysis.sage_hdf5 module

sage_analysis package

	
class sage_analysis.GalaxyAnalysis(sage_parameter_fnames: List[str], plot_toggles: Optional[Dict[str, bool]] = None, sage_output_formats: Optional[List[str]] = None, labels: Optional[List[str]] = None, first_files_to_analyze: Optional[List[int]] = None, last_files_to_analyze: Optional[List[int]] = None, num_sage_output_files: Optional[List[int]] = None, output_format_data_classes_dict: Optional[Dict[str, Any]] = None, random_seeds: Optional[List[int]] = None, history_redshifts: Optional[Dict[str, Union[List[float], str]]] = None, calculation_functions: Optional[Dict[str, Tuple[Callable, Dict[str, Any]]]] = None, plot_functions: Optional[Dict[str, Tuple[Callable, Dict[str, Any]]]] = None, galaxy_properties_to_analyze: Optional[Dict[str, Dict[str, Union[str, List[str]]]]] = None, plots_that_need_smf: Optional[List[str]] = None, IMFs: Optional[List[str]] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Handles the ingestion, analysis, and plotting of SAGE galaxy outputs.

	
_determine_history_snapshots(model: sage_analysis.model.Model) → Optional[List[int]]

	Determines which snapshots need to be iterated over to track properties over time. For each
Model, the _history_<property>_redshifts and
history<property>_snapshots attributes are updated.

	Parameters

	model (Model) – The Model instance to be updated.

	Returns

	snapshots_to_loop – The snapshots that need to be analyzed for this model to ensure that the requested redshifts are analyzed
for the history properties.

	Return type

	list of ints

	
_determine_snapshots_to_use(snapshots: Optional[List[List[int]]], redshifts: Optional[List[List[int]]]) → List[List[int]]

	Determine which snapshots should be analyzed/plotted based on the input from the user.

	Parameters

	
	snapshots (nested list of ints or string, optional) – The snapshots to analyze for each model. If both this variable and redshifts are not specified, uses
the highest snapshot (i.e., lowest redshift) as dictated by the
redshifts attribute from the parameter file read for each model.

If an entry if "All", then all snapshots for that model will be analyzed.

The length of the outer list MUST be equal to num_models.

Warning

Only ONE of snapshots and redshifts can be specified.

	redshifts (nested list of ints, optional) – The redshift to analyze for each model. If both this variable and snapshots are not specified, uses
the highest snapshot (i.e., lowest redshift) as dictated by the
redshifts attribute from the parameter file read for each model.

The snapshots selected for analysis will be those that result in the redshifts closest to those requested.
If an entry if "All", then all snapshots for that model will be analyzed.

The length of the outer list MUST be equal to num_models.

Warning

Only ONE of snapshots and redshifts can be specified.

	Returns

	
	snapshots_for_models (nested list of ints) – The snapshots to be analyzed for each model.

	Errors

	——

	ValueError – Thrown if BOTH snapshots and redshifts are specified.

	
_does_smf_need_computing(model: sage_analysis.model.Model) → bool

	Determines whether the stellar mass function needs to be calculated based on the values of
plot_toggles plots_that_need_smf.

	Parameters

	model (Model) – The Model instance we’re checking.

	Returns

	A boolean indicating whether the stellar mass function needs to be computed or not.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
_initialise_properties(name: str, model: sage_analysis.model.Model, galaxy_properties: Dict[str, Union[str, List[str]]], snapshot: int) → None

	Initialises galaxy properties that will be analyzed.

	Parameters

	
	name (string) – The name of the bins if the properties will be binned or a unique identifying name otherwise.

	model (Model) – The Model instance to be updated.

	galaxy_properties (dict[str, float or str or list of strings]]) – The galaxy properties that will be initialized. We defer to galaxy_properties_to_analyze in the
:py:method:`~__init__` method for a full description of this variable.

	snapshot (int) – The snapshot the properties are being updated for.

	
_read_sage_file(model: sage_analysis.model.Model) → None

	Reads a SAGE parameter file to determine all parameters such as cosmology, redshift list, etc. In
particular, also initializes the data_class for each model. This
attribute is unique depending upon the value of sage_output_format and
the corresponding entry in output_format_data_classes_dict.

	Parameters

	model (Model) – The Model instance to be updated.

	
analyze_galaxies(snapshots: Optional[List[List[Union[int, str]]]] = None, redshifts: Optional[List[List[Union[float, str]]]] = None, analyze_history_snapshots: bool = True) → None

	Analyses the galaxies of the initialized models. These attributes will be updated directly, with
the properties accessible via GalaxyAnalysis.models[<model_num>].properties[<snapshot>][<property_name>].

Also, all snapshots required to track the properties over time (as specified by
_history_snaps_to_loop) will be analyzed, unless
analyze_history_snapshots is False.

	Parameters

	
	snapshots (nested list of ints or string, optional) – The snapshots to analyze for each model. If both this variable and redshifts are not specified, uses
the highest snapshot (i.e., lowest redshift) as dictated by the
redshifts attribute from the parameter file read for each model.

If an entry if "All", then all snapshots for that model will be analyzed.

The length of the outer list MUST be equal to num_models.

Notes

If analyze_history_snapshots is True, then the snapshots iterated over will be the unique
combination of the snapshots required for history snapshots and those specified by this variable.

Warning

Only ONE of snapshots and redshifts can be specified.

	redshifts (nested list of ints, optional) – The redshift to analyze for each model. If both this variable and snapshots are not specified, uses
the highest snapshot (i.e., lowest redshift) as dictated by the
redshifts attribute from the parameter file read for each model.

The snapshots selected for analysis will be those that result in the redshifts closest to those requested.
If an entry if "All", then all snapshots for that model will be analyzed.

The length of the outer list MUST be equal to num_models.

Notes

If analyze_history_snapshots is True, then the snapshots iterated over will be the unique
combination of the snapshots required for history snapshots and those specified by this variable.

Warning

Only ONE of snapshots and redshifts can be specified.

	analyze_history_snapshots (bool, optional) – Specifies whether the snapshots required to analyze the properties tracked over time (e.g., stellar mass or
star formation rate density) should be iterated over. If not specified, then only snapshot will be
analyzed.

Notes

If you wish to analyze different properties to when you initialized an instance of GalaxyAnalysis,
you MUST re-initialize another instance. Otherwise, the properties will be non-zeroed and not initialized
correctly.

	ValueError

	Thrown if BOTH snapshots and redshifts are specified.

	
generate_plots(snapshots: Optional[List[List[Union[int, str]]]] = None, redshifts: Optional[List[List[Union[float, str]]]] = None, plot_helper: Optional[sage_analysis.plot_helper.PlotHelper] = None) → Optional[List[matplotlib.figure.Figure]]

	Generates the plots for the models being analyzed. The plots to be created are defined by the
values of plot_toggles specified when an instance of GalaxyAnalysis was initialized.
If you wish to analyze different properties or create different plots, you MUST initialize another instance
of GalaxyAnalysis with the new values for plot_toggles (ensuring that values of
calcuations_functions and plot_functions are updated if using non-default values for plot_toggles).

This method should be run after analysing the galaxies using :py:method:`~analyze_galaxies`.

	Parameters

	
	snapshots (nested list of ints or string, optional) – The snapshots to plot for each model. If both this variable and redshifts are not specified, uses
the highest snapshot (i.e., lowest redshift) as dictated by the
redshifts attribute from the parameter file read for each model.

If an entry if "All", then all snapshots for that model will be analyzed.

The length of the outer list MUST be equal to num_models.

For properties that aren’t analyzed over redshift, the snapshots for each model will be plotted on each
figure. For example, if we are plotting a single model, setting this variable to [[63, 50]] will
give results for snapshot 63 and 50 on each figure. For some plots (e.g., those properties that are scatter
plotted), this is undesirable and one should instead iterate over single snapshot values instead.

Notes

If analyze_history_snapshots is True, then the snapshots iterated over will be the unique
combination of the snapshots required for history snapshots and those specified by this variable.

Warning

Only ONE of snapshots and redshifts can be specified.

	redshifts (nested list of ints, optional) – The redshift to plot for each model. If both this variable and snapshots are not specified, uses
the highest snapshot (i.e., lowest redshift) as dictated by the
redshifts attribute from the parameter file read for each model.

The snapshots selected for analysis will be those that result in the redshifts closest to those requested.
If an entry if "All", then all snapshots for that model will be analyzed.

The length of the outer list MUST be equal to num_models.

Warning

Only ONE of snapshots and redshifts can be specified.

	plot_helper (PlotHelper, optional) – A helper class that contains attributes and methods to assist with plotting. In particular, the path where
the plots will be saved and the output format. Refer to ../user/plot_helper for more information on
how to initialize this class and its use.

If not specified, then will initialize a default instance of
PlotHelper. Refer to the
PlotHelper documentation for a list of default attributes.

	Returns

	
	None – Returned if plot_toggles is an empty dictionary.

	figs – The figures generated by the plot_functions functions.

	
history_redshifts

	Specifies which redshifts should be analyzed for properties and
plots that are tracked over time. The keys here MUST correspond to the keys in plot_toggles. If
the value of the entry is "All", then all snapshots will be analyzed. Otherwise, will search for the
closest snapshots to the requested redshifts.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict] [string, string or list of floats]

	
models

	The Model s
being analyzed.

	Type

	list of Model class instances

	
num_models

	The number of models being analyzed.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
output_format_data_classes_dict

	A dictionary that maps the output format name to the corresponding data class.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict] [str [https://docs.python.org/3/library/stdtypes.html#str], class]

	
plot_functions

	A dictionary of functions that are used to plot the properties
of galaxies being analyzed. Here, the outer key is the name of the corresponding plot toggle (e.g.,
"SMF"), the value is a tuple containing the function itself (e.g., plot_SMF()), and another dictionary
which specifies any optional keyword arguments to that function with keys as the name of variable (e.g.,
"plot_sub_populations") and values as the variable value (e.g., True).

The functions in this dictionary are called for all files analyzed and MUST have a signature func(Models,
snapshot, plot_helper, plot_output_format, optional_keyword_arguments). This dict can be generated using
generate_func_dict().

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict] [str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple](function, dict [https://docs.python.org/3/library/stdtypes.html#dict] [str [https://docs.python.org/3/library/stdtypes.html#str], any])]

	
plot_toggles

	Specifies which properties should be analyzed and plotted.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict] [str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]]

Submodules

sage_analysis.model module

This module contains the Model class. The Model class contains all the data
paths, cosmology etc for calculating galaxy properties.

To read SAGE data, we make use of specialized Data Classes (e.g.,
SageBinaryData
and:py:class:~sage_analysis.sage_hdf5.SageHdf5Data). We refer to
Ingesting Custom Data for more information about adding your own Data Class to ingest
data.

To calculate (and plot) extra properties from the SAGE output, we refer to
../user/calc.rst and ../user/plotting.rst.

	
class sage_analysis.model.Model(sage_file: str, sage_output_format: Optional[str], label: Optional[str], first_file_to_analyze: int, last_file_to_analyze: int, num_sage_output_files: Optional[int], random_seed: Optional[int], IMF: str, plot_toggles: Dict[str, bool], plots_that_need_smf: List[str], sample_size: int = 1000, sSFRcut: float = -11.0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Handles all the galaxy data (including calculated properties) for a SAGE model.

The ingestion of data is handled by inidivudal Data Classes (e.g.,
SageBinaryData and SageHdf5Data).
We refer to Ingesting Custom Data for more information about adding your own Data Class to ingest data.

	
calc_properties(calculation_functions, gals, snapshot: int)

	Calculates galaxy properties for a single file of galaxies.

	Parameters

	
	calculation_functions (dict [string, function]) – Specifies the functions used to calculate the properties. All functions in
this dictionary are called on the galaxies. The function signature is required
to be func(Model, gals)

	gals (exact format given by the Model Data Class.) – The galaxies for this file.

	snapshot (int) – The snapshot that we’re calculating properties for.

Notes

If sage_output_format is sage_binary, gals is a numpy
structured array. If sage_output_format: is
sage_hdf5, gals is an open HDF5 group. We refer to
Ingesting Custom Data for more information about adding your own Data Class to ingest data.

	
calc_properties_all_files(calculation_functions, snapshot: int, close_file: bool = True, use_pbar: bool = True, debug: bool = False)

	Calculates galaxy properties for all files of a single Model.

	Parameters

	
	calculation_functions (dict [string, list(function, dict[string, variable])]) – Specifies the functions used to calculate the properties of this
Model. The key of this dictionary is the name of the plot toggle.
The value is a list with the 0th element being the function and the 1st
element being a dictionary of additional keyword arguments to be passed to
the function. The inner dictionary is keyed by the keyword argument names
with the value specifying the keyword argument value.

All functions in this dictionary for called after the galaxies for each
sub-file have been loaded. The function signature is required to be
func(Model, gals, <Extra Keyword Arguments>).

	snapshot (int) – The snapshot that we’re calculating properties for.

	close_file (boolean, optional) – Some data formats have a single file data is read from rather than opening and
closing the sub-files in read_gals(). Hence once the properties are
calculated, the file must be closed. This variable flags whether the data
class specific close_file() method should be called upon completion of
this method.

	use_pbar (Boolean, optional) – If set, uses the tqdm package to create a progress bar.

	debug (Boolean, optional) – If set, prints out extra useful debug information.

	
init_binned_properties(bin_low: float, bin_high: float, bin_width: float, bin_name: str, property_names: List[str], snapshot: int)

	Initializes the properties (and respective bins) that will
binned on some variable. For example, the stellar mass function (SMF) will
describe the number of galaxies within a stellar mass bin.

bins can be accessed via Model.bins["bin_name"] and are
initialized as ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]. properties can be accessed via
Model.properties["property_name"] and are initialized using
numpy.zeros [https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros].

	Parameters

	
	bin_low, bin_high, bin_width (floats) – Values that define the minimum, maximum and width of the bins respectively.
This defines the binning axis that the property_names properties will be
binned on.

	bin_name (string) – Name of the binning axis, accessed by Model.bins["bin_name"].

	property_names (list of strings) – Name of the properties that will be binned along the defined binning axis.
Properties can be accessed using Model.properties["property_name"]; e.g.,
Model.properties["SMF"] would return the stellar mass function that is binned
using the bin_name bins.

	snapshot (int) – The snapshot we’re initialising the properties for.

	
init_scatter_properties(property_names: List[str], snapshot: int)

	Initializes the properties that will be extended as
ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]. These are used to plot (e.g.,) a the star formation rate
versus stellar mass for a subset of sample_size galaxies. Initializes
as empty ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	Parameters

	
	property_names (list of strings) – Name of the properties that will be extended as ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	snapshot (int) – The snapshot we’re initialising the properties for.

	
init_single_properties(property_names: List[str], snapshot: int) → None

	Initializes the properties that are described using a single number.
This is used to plot (e.g.,) a the sum of stellar mass across all galaxies.
Initializes as 0.0.

	Parameters

	
	property_names (list of strings) – Name of the properties that will be described using a single number.

	snapshot (int) – The snapshot we’re initialising the properties for.

	
select_random_galaxy_indices(inds: numpy.ndarray, num_inds_selected_already: int) → numpy.ndarray

	Selects random indices (representing galaxies) from inds. This method assumes that the total number of
galaxies selected across all SAGE files analyzed is sample_size and that (preferably) these
galaxies should be selected equally amongst all files analyzed.

For example, if we are analyzing 8 SAGE output files and wish to select 10,000 galaxies, this function
would hence select 1,250 indices from inds.

If the length of inds is less than the number of requested values (e.g., inds only contains 1,000
values), then the next file analyzed will attempt to select 1,500 random galaxies (1,250 base plus an addition
250 as the previous file could not find enough galaxies).

At the end of the analysis, if there have not been enough galaxies selected, then a message is sent to the
user.

	
IMF

	The initial mass function.

	Type

	{"Chabrier", "Salpeter"}

	
base_sage_data_path

	Base path to the output data. This is the path without specifying any extra information about redshift
or the file extension itself.

	Type

	string

	
bins

	The bins used to bin some
properties. Bins are initialized through
init_binned_properties(). Key is the name of the bin,
(bin_name in init_binned_properties()).

	Type

	dict [string, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	
box_size

	Size of the simulation box. Units are Mpc/h.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculation_functions

	A dictionary of functions that are used to compute the properties of
galaxies. Here, the string is the name of the toggle (e.g., "SMF"), the value is a tuple
containing the function itself (e.g., calc_SMF()), and another dictionary which specifies any optional
keyword arguments to that function with keys as the name of variable (e.g., "calc_sub_populations") and
values as the variable value (e.g., True).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][func, dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], any]]]

	
first_file_to_analyze

	The first SAGE sub-file to be read. If sage_output_format is
sage_binary, files read must be labelled sage_data_path.XXX.
If sage_output_format is sage_hdf5, the file read will be
sage_data_path and the groups accessed will be Core_XXX. In both cases,
XXX represents the numbers in the range
[first_file_to_analyze, last_file_to_analyze] inclusive.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
hubble_h

	Value of the fractional Hubble parameter. That is, H = 100*hubble_h.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
label

	Label that will go on axis legends for this Model.

	Type

	string

	
last_file_to_analyze

	The last SAGE sub-file to be read. If sage_output_format is
sage_binary, files read must be labelled sage_data_path.XXX.
If sage_output_format is sage_hdf5, the file read will be
sage_data_path and the groups accessed will be Core_XXX. In both cases,
XXX represents the numbers in the range
[first_file_to_analyze, last_file_to_analyze] inclusive.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
num_gals_all_files

	Number of galaxies across all files. For HDF5 data formats, this represents
the number of galaxies across all Core_XXX sub-groups.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
num_sage_output_files

	The number of files that SAGE wrote. This will be equal to the number of
processors the SAGE ran with.

Notes

If sage_output_format is sage_hdf5, this attribute is not required.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
output_path

	Path to where some plots will be saved. Used for
plot_spatial_3d().

	Type

	string

	
parameter_dirpath

	The directory path to where the SAGE paramter file is located. This is only the base directory path
and does not include the name of the file itself.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
plot_toggles

	Specifies which plots should be created for this model. This will control which properties
should be calculated; e.g., if no stellar mass function is to be plotted, the stellar mass function will not be
computed.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]]

	
plots_that_need_smf

	Specifies the plot toggles that require the stellar mass function to be properly computed and
analyzed. For example, plotting the quiescent fraction of galaxies requires knowledge of the total number of
galaxies. The strings here must EXACTLY match the keys in plot_toggles.

	Type

	list of ints

	
properties

	The galaxy properties
stored across the input files and snapshots. These properties are updated within the respective
calc_<plot_toggle> functions.

The outside key is "snapshot_XX" where XX is the snapshot number for the property. The inner key is the
name of the proeprty (e.g., "SMF").

	Type

	dict [string, dict [string, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]] or dict[string, dict[string, float]

	
random_seed

	Specifies the seed used for the random number generator, used to select galaxies for plotting
purposes. If None, then uses default call to seed() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html#numpy.random.seed].

	Type

	Optional[int [https://docs.python.org/3/library/functions.html#int]]

	
redshifts

	Redshifts for this simulation.

	Type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
sSFRcut

	The specific star formation rate above which a galaxy is flagged as “star forming”. Units are log10.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
sage_data_path

	Path to the output data. If sage_output_format is
sage_binary, files read must be labelled sage_data_path.XXX.
If sage_output_format is sage_hdf5, the file read will be
sage_data_path and the groups accessed will be Core_XXX at snapshot
snapshot. In both cases, XXX represents the numbers in the range
[first_file_to_analyze, last_file_to_analyze] inclusive.

	Type

	string

	
sage_file

	The path to where the SAGE .ini file is located.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
sage_output_format

	The output format SAGE wrote in.
A specific Data Class (e.g., SageBinaryData
and SageHdf5Data) must be written and
used for each sage_output_format option. We refer to
Ingesting Custom Data for more information about adding your own Data Class to ingest
data.

	Type

	{"sage_binary", "sage_binary"}

	
sample_size

	Specifies the length of the properties attributes stored as 1-dimensional
ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]. These properties are initialized using
init_scatter_properties().

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
snapshot

	Specifies the snapshot to be read. If sage_output_format is
sage_hdf5, this specifies the HDF5 group to be read. Otherwise, if
sage_output_format is sage_binary, this attribute will be used to
index redshifts and generate the suffix for sage_data_path.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
volume

	Volume spanned by the trees analyzed by this model. This depends upon the
number of files processed, [:py:attr:`~first_file_to_analyze`, :py:attr:`~last_file_to_analyze`],
relative to the total number of files the simulation spans over,
num_sim_tree_files.

Notes

This is not necessarily box_size cubed. It is possible that this
model is only analysing a subset of files and hence the volume will be less.

	Type

	volume

sage_analysis.sage_binary module

This module defines the SageBinaryData class. This class interfaces with the
Model class to read in binary data written by SAGE.
The value of sage_output_format is generally
sage_binary if it is to be read with this class.

If you wish to ingest data from your own flavour of SAGE, please open a Github issue, I plan to add this documentation
in future :)

Author: Jacob Seiler.

	
class sage_analysis.sage_binary.SageBinaryData(model: sage_analysis.model.Model, sage_file_to_read: str)

	Bases: sage_analysis.data_class.DataClass

Class intended to inteface with the Model class to
ingest the data written by SAGE. It includes methods for reading the output
galaxies, setting cosmology etc. It is specifically written for when
sage_output_format is sage_binary.

	
_check_for_file(model: sage_analysis.model.Model, file_num: int) → Optional[str]

	Checks to see if a file for the given file number exists. Importantly, we check assuming that the path given
in the SAGE parameter file is relative and absolute.

	Parameters

	file_num (int) – The file number that we’re checking for files.

	Returns

	If a file exists, the name of that file. Otherwise, if the file does not exist (using either relative or
absolute paths), then None.

	Return type

	fname or None

	
_get_galaxy_struct()

	Sets the numpy structured array for holding the galaxy data.

	
close_file(model: sage_analysis.model.Model)

	An empty method to ensure consistency with the HDF5 data class. This is empty because snapshots are saved over
different files by default in the binary format.

	
determine_num_gals(model: sage_analysis.model.Model, *args)

	Determines the number of galaxies in all files for this
Model.

	Parameters

	
	model (Model class) – The Model we’re reading data for.

	*args (Any) – Extra arguments to allow other data class to pass extra arguments to their version of
determine_num_gals.

	
determine_volume_analyzed(model: sage_analysis.model.Model) → float

	Determines the volume analyzed. This can be smaller than the total simulation box.

	Parameters

	model (Model instance) – The model that this data class is associated with.

	Returns

	volume – The numeric volume being processed during this run of the code in (Mpc/h)^3.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
read_gals(model: sage_analysis.model.Model, file_num: int, snapshot: int, pbar: Optional[tqdm.std.tqdm] = None, plot_galaxies: bool = False, debug: bool = False)

	Reads the galaxies of a model file at snapshot specified by
snapshot.

	Parameters

	
	model (Model class) – The Model we’re reading data for.

	file_num (int) – Suffix number of the file we’re reading.

	pbar (tqdm class instance, optional) – Bar showing the progress of galaxy reading. If None, progress bar will
not show.

	plot_galaxies (bool, optional) – If set, plots and saves the 3D distribution of galaxies for this file.

	debug (bool, optional) – If set, prints out extra useful debug information.

	Returns

	gals – The galaxies for this file.

	Return type

	numpy structured array with format given by :py:method:`~_get_galaxy_struct`

Notes

tqdm does not play nicely with printing to stdout. Hence we disable
the tqdm progress bar if debug=True.

	
read_sage_params(sage_file_path: str) → Dict[str, Any]

	Read the SAGE parameter file.

	Parameters

	sage_file_path (string) – Path to the SAGE parameter file.

	Returns

	model_dict – Dictionary containing the parameter names and their values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict] [str [https://docs.python.org/3/library/stdtypes.html#str], var]

	
update_snapshot_and_data_path(model: sage_analysis.model.Model, snapshot: int, use_absolute_path: bool = False)

	Updates the _sage_data_path to point to a new redshift file. Uses the
redshift array redshifts.

	Parameters

	
	snapshot (int) – Snapshot we’re updating _sage_data_path to
point to.

	use_absolute_path (bool) – If specified, will use the absolute path to the SAGE output data. Otherwise, will use the path that is
relative to the SAGE parameter file. This is hand because the SAGE parameter file can contain
either relative or absolute paths.

sage_analysis.sage_hdf5 module

This module defines the SageHdf5Data class. This class interfaces with the
Model class to read in binary data written by SAGE.
The value of sage_output_format is generally
sage_hdf5 if it is to be read with this class.

If you wish to ingest data from your own flavour of SAGE, please open a Github issue, I plan to add this documentation
in future :)

Author: Jacob Seiler.

	
class sage_analysis.sage_hdf5.SageHdf5Data(model: sage_analysis.model.Model, sage_file_to_read: str)

	Bases: sage_analysis.data_class.DataClass

Class intended to inteface with the Model class to ingest the data written by
SAGE. It includes methods for reading the output galaxies, setting cosmology etc. It is specifically written
for when sage_output_format is sage_hdf5.

	
_check_model_compatibility(model: sage_analysis.model.Model, sage_dict: Optional[Dict[str, Any]]) → None

	Ensures that the attributes in the Model instance are compatible with the
variables read from the SAGE parameter file (if read at all).

	Parameters

	
	model (Model instance) – The model that this data class is associated with.

	sage_dict (optional, dict[str, Any]) – A dictionary containing all of the fields read from the SAGE parameter file.

Warning

	UserWarning

	Raised if the user initialized Model with a value of
num_sage_output_files that is different to the value specified in the
HDF5 file.

	
close_file(model)

	Closes the open HDF5 file.

	
determine_num_gals(model: sage_analysis.model.Model, snapshot: int, *args)

	Determines the number of galaxies in all cores for this model at the specified snapshot.

	Parameters

	
	model (Model class) – The Model we’re reading data for.

	snapshot (int) – The snapshot we’re analysing.

	*args (Any) – Extra arguments to allow other data class to pass extra arguments to their version of
determine_num_gals.

	
determine_volume_analyzed(model: sage_analysis.model.Model) → float

	Determines the volume analyzed. This can be smaller than the total simulation box.

	Parameters

	model (Model instance) – The model that this data class is associated with.

	Returns

	volume – The numeric volume being processed during this run of the code in (Mpc/h)^3.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
read_gals(model: sage_analysis.model.Model, core_num: int, snapshot: int, pbar: Optional[tqdm.std.tqdm] = None, plot_galaxies: bool = False, debug: bool = False) → Any

	Reads the galaxies of a single core at the specified
snapshot.

	Parameters

	
	model (Model class) – The Model we’re reading data for.

	core_num (Integer) – The core group we’re reading.

	pbar (tqdm class instance, optional) – Bar showing the progress of galaxy reading. If None, progress bar will
not show.

	plot_galaxies (Boolean, optional) – If set, plots and saves the 3D distribution of galaxies for this file.

	debug (Boolean, optional) – If set, prints out extra useful debug information.

	Returns

	gals – The galaxies for this file.

	Return type

	h5py group

Notes

tqdm does not play nicely with printing to stdout. Hence we disable
the tqdm progress bar if debug=True.

	
read_sage_params(sage_file_path: str) → Dict[str, Any]

	Read the SAGE parameter file.

	Parameters

	sage_file_path (string) – Path to the SAGE parameter file.

	Returns

	model_dict – Dictionary containing the parameter names and their values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict] [str [https://docs.python.org/3/library/stdtypes.html#str], var]

	
update_snapshot_and_data_path(model: sage_analysis.model.Model, snapshot: int)

	Updates the snapshot attribute to snapshot. As the HDF5 file contains all
snapshot information, we do not need to update the path to the output data. However, ensure that the file
itself is still open.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sage_analysis	

 	
 	
 sage_analysis.model	

 	
 	
 sage_analysis.sage_binary	

 	
 	
 sage_analysis.sage_hdf5	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | V

_

 	
 	_abc_impl (sage_analysis.sage_binary.SageBinaryData attribute)

 	(sage_analysis.sage_hdf5.SageHdf5Data attribute)

 	_check_for_file() (sage_analysis.sage_binary.SageBinaryData method), [1]

 	_check_model_compatibility() (sage_analysis.sage_hdf5.SageHdf5Data method), [1]

 	_determine_history_snapshots() (sage_analysis.GalaxyAnalysis method)

 	
 	_determine_snapshots_to_use() (sage_analysis.GalaxyAnalysis method)

 	_does_smf_need_computing() (sage_analysis.GalaxyAnalysis method)

 	_get_galaxy_struct() (sage_analysis.sage_binary.SageBinaryData method), [1]

 	_initialise_properties() (sage_analysis.GalaxyAnalysis method)

 	_read_sage_file() (sage_analysis.GalaxyAnalysis method)

A

 	
 	analyze_galaxies() (sage_analysis.GalaxyAnalysis method)

B

 	
 	base_sage_data_path (sage_analysis.model.Model attribute), [1]

 	
 	bins (sage_analysis.model.Model attribute), [1]

 	box_size (sage_analysis.model.Model attribute), [1]

C

 	
 	calc_properties() (sage_analysis.model.Model method), [1]

 	calc_properties_all_files() (sage_analysis.model.Model method), [1]

 	
 	calculation_functions (sage_analysis.model.Model attribute), [1]

 	close_file() (sage_analysis.sage_binary.SageBinaryData method), [1]

 	(sage_analysis.sage_hdf5.SageHdf5Data method), [1]

D

 	
 	determine_num_gals() (sage_analysis.sage_binary.SageBinaryData method), [1]

 	(sage_analysis.sage_hdf5.SageHdf5Data method), [1]

 	
 	determine_volume_analyzed() (sage_analysis.sage_binary.SageBinaryData method), [1]

 	(sage_analysis.sage_hdf5.SageHdf5Data method), [1]

F

 	
 	first_file_to_analyze (sage_analysis.model.Model attribute), [1]

G

 	
 	GalaxyAnalysis (class in sage_analysis)

 	
 	generate_plots() (sage_analysis.GalaxyAnalysis method)

H

 	
 	history_redshifts (sage_analysis.GalaxyAnalysis attribute)

 	
 	hubble_h (sage_analysis.model.Model attribute), [1]

I

 	
 	IMF (sage_analysis.model.Model attribute), [1]

 	init_binned_properties() (sage_analysis.model.Model method), [1]

 	
 	init_scatter_properties() (sage_analysis.model.Model method), [1]

 	init_single_properties() (sage_analysis.model.Model method), [1]

L

 	
 	label (sage_analysis.model.Model attribute), [1]

 	
 	last_file_to_analyze (sage_analysis.model.Model attribute), [1]

M

 	
 	Model (class in sage_analysis.model), [1]

 	
 	models (sage_analysis.GalaxyAnalysis attribute)

N

 	
 	num_gals_all_files (sage_analysis.model.Model attribute), [1]

 	
 	num_models (sage_analysis.GalaxyAnalysis attribute)

 	num_sage_output_files (sage_analysis.model.Model attribute), [1]

O

 	
 	output_format_data_classes_dict (sage_analysis.GalaxyAnalysis attribute)

 	
 	output_path (sage_analysis.model.Model attribute), [1]

P

 	
 	parameter_dirpath (sage_analysis.model.Model attribute), [1]

 	plot_functions (sage_analysis.GalaxyAnalysis attribute)

 	plot_toggles (sage_analysis.GalaxyAnalysis attribute)

 	(sage_analysis.model.Model attribute), [1]

 	
 	plots_that_need_smf (sage_analysis.model.Model attribute), [1]

 	properties (sage_analysis.model.Model attribute), [1]

R

 	
 	random_seed (sage_analysis.model.Model attribute), [1]

 	read_gals() (sage_analysis.sage_binary.SageBinaryData method), [1]

 	(sage_analysis.sage_hdf5.SageHdf5Data method), [1]

 	
 	read_sage_params() (sage_analysis.sage_binary.SageBinaryData method), [1]

 	(sage_analysis.sage_hdf5.SageHdf5Data method), [1]

 	redshifts (sage_analysis.model.Model attribute), [1]

S

 	
 	sage_analysis (module)

 	sage_analysis.model (module), [1]

 	sage_analysis.sage_binary (module), [1]

 	sage_analysis.sage_hdf5 (module), [1]

 	sage_data_path (sage_analysis.model.Model attribute), [1]

 	sage_file (sage_analysis.model.Model attribute), [1]

 	
 	sage_output_format (sage_analysis.model.Model attribute), [1]

 	SageBinaryData (class in sage_analysis.sage_binary), [1]

 	SageHdf5Data (class in sage_analysis.sage_hdf5), [1]

 	sample_size (sage_analysis.model.Model attribute), [1]

 	select_random_galaxy_indices() (sage_analysis.model.Model method), [1]

 	snapshot (sage_analysis.model.Model attribute), [1]

 	sSFRcut (sage_analysis.model.Model attribute), [1]

U

 	
 	update_snapshot_and_data_path() (sage_analysis.sage_binary.SageBinaryData method), [1]

 	(sage_analysis.sage_hdf5.SageHdf5Data method), [1]

V

 	
 	volume (sage_analysis.model.Model attribute), [1]

model module

This module contains the Model class. The Model class contains all the data
paths, cosmology etc for calculating galaxy properties.

To read SAGE data, we make use of specialized Data Classes (e.g.,
SageBinaryData
and:py:class:~sage_analysis.sage_hdf5.SageHdf5Data). We refer to
Ingesting Custom Data for more information about adding your own Data Class to ingest
data.

To calculate (and plot) extra properties from the SAGE output, we refer to
../user/calc.rst and ../user/plotting.rst.

	
class sage_analysis.model.Model(sage_file: str, sage_output_format: Optional[str], label: Optional[str], first_file_to_analyze: int, last_file_to_analyze: int, num_sage_output_files: Optional[int], random_seed: Optional[int], IMF: str, plot_toggles: Dict[str, bool], plots_that_need_smf: List[str], sample_size: int = 1000, sSFRcut: float = -11.0)

	Handles all the galaxy data (including calculated properties) for a SAGE model.

The ingestion of data is handled by inidivudal Data Classes (e.g.,
SageBinaryData and SageHdf5Data).
We refer to Ingesting Custom Data for more information about adding your own Data Class to ingest data.

	
calc_properties(calculation_functions, gals, snapshot: int)

	Calculates galaxy properties for a single file of galaxies.

	Parameters

	
	calculation_functions (dict [string, function]) – Specifies the functions used to calculate the properties. All functions in
this dictionary are called on the galaxies. The function signature is required
to be func(Model, gals)

	gals (exact format given by the Model Data Class.) – The galaxies for this file.

	snapshot (int) – The snapshot that we’re calculating properties for.

Notes

If sage_output_format is sage_binary, gals is a numpy
structured array. If sage_output_format: is
sage_hdf5, gals is an open HDF5 group. We refer to
Ingesting Custom Data for more information about adding your own Data Class to ingest data.

	
calc_properties_all_files(calculation_functions, snapshot: int, close_file: bool = True, use_pbar: bool = True, debug: bool = False)

	Calculates galaxy properties for all files of a single Model.

	Parameters

	
	calculation_functions (dict [string, list(function, dict[string, variable])]) – Specifies the functions used to calculate the properties of this
Model. The key of this dictionary is the name of the plot toggle.
The value is a list with the 0th element being the function and the 1st
element being a dictionary of additional keyword arguments to be passed to
the function. The inner dictionary is keyed by the keyword argument names
with the value specifying the keyword argument value.

All functions in this dictionary for called after the galaxies for each
sub-file have been loaded. The function signature is required to be
func(Model, gals, <Extra Keyword Arguments>).

	snapshot (int) – The snapshot that we’re calculating properties for.

	close_file (boolean, optional) – Some data formats have a single file data is read from rather than opening and
closing the sub-files in read_gals(). Hence once the properties are
calculated, the file must be closed. This variable flags whether the data
class specific close_file() method should be called upon completion of
this method.

	use_pbar (Boolean, optional) – If set, uses the tqdm package to create a progress bar.

	debug (Boolean, optional) – If set, prints out extra useful debug information.

	
init_binned_properties(bin_low: float, bin_high: float, bin_width: float, bin_name: str, property_names: List[str], snapshot: int)

	Initializes the properties (and respective bins) that will
binned on some variable. For example, the stellar mass function (SMF) will
describe the number of galaxies within a stellar mass bin.

bins can be accessed via Model.bins["bin_name"] and are
initialized as ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]. properties can be accessed via
Model.properties["property_name"] and are initialized using
numpy.zeros [https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros].

	Parameters

	
	bin_low, bin_high, bin_width (floats) – Values that define the minimum, maximum and width of the bins respectively.
This defines the binning axis that the property_names properties will be
binned on.

	bin_name (string) – Name of the binning axis, accessed by Model.bins["bin_name"].

	property_names (list of strings) – Name of the properties that will be binned along the defined binning axis.
Properties can be accessed using Model.properties["property_name"]; e.g.,
Model.properties["SMF"] would return the stellar mass function that is binned
using the bin_name bins.

	snapshot (int) – The snapshot we’re initialising the properties for.

	
init_scatter_properties(property_names: List[str], snapshot: int)

	Initializes the properties that will be extended as
ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]. These are used to plot (e.g.,) a the star formation rate
versus stellar mass for a subset of sample_size galaxies. Initializes
as empty ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	Parameters

	
	property_names (list of strings) – Name of the properties that will be extended as ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	snapshot (int) – The snapshot we’re initialising the properties for.

	
init_single_properties(property_names: List[str], snapshot: int) → None

	Initializes the properties that are described using a single number.
This is used to plot (e.g.,) a the sum of stellar mass across all galaxies.
Initializes as 0.0.

	Parameters

	
	property_names (list of strings) – Name of the properties that will be described using a single number.

	snapshot (int) – The snapshot we’re initialising the properties for.

	
select_random_galaxy_indices(inds: numpy.ndarray, num_inds_selected_already: int) → numpy.ndarray

	Selects random indices (representing galaxies) from inds. This method assumes that the total number of
galaxies selected across all SAGE files analyzed is sample_size and that (preferably) these
galaxies should be selected equally amongst all files analyzed.

For example, if we are analyzing 8 SAGE output files and wish to select 10,000 galaxies, this function
would hence select 1,250 indices from inds.

If the length of inds is less than the number of requested values (e.g., inds only contains 1,000
values), then the next file analyzed will attempt to select 1,500 random galaxies (1,250 base plus an addition
250 as the previous file could not find enough galaxies).

At the end of the analysis, if there have not been enough galaxies selected, then a message is sent to the
user.

	
IMF

	The initial mass function.

	Type

	{"Chabrier", "Salpeter"}

	
base_sage_data_path

	Base path to the output data. This is the path without specifying any extra information about redshift
or the file extension itself.

	Type

	string

	
bins

	The bins used to bin some
properties. Bins are initialized through
init_binned_properties(). Key is the name of the bin,
(bin_name in init_binned_properties()).

	Type

	dict [string, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	
box_size

	Size of the simulation box. Units are Mpc/h.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
calculation_functions

	A dictionary of functions that are used to compute the properties of
galaxies. Here, the string is the name of the toggle (e.g., "SMF"), the value is a tuple
containing the function itself (e.g., calc_SMF()), and another dictionary which specifies any optional
keyword arguments to that function with keys as the name of variable (e.g., "calc_sub_populations") and
values as the variable value (e.g., True).

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][func, dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], any]]]

	
first_file_to_analyze

	The first SAGE sub-file to be read. If sage_output_format is
sage_binary, files read must be labelled sage_data_path.XXX.
If sage_output_format is sage_hdf5, the file read will be
sage_data_path and the groups accessed will be Core_XXX. In both cases,
XXX represents the numbers in the range
[first_file_to_analyze, last_file_to_analyze] inclusive.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
hubble_h

	Value of the fractional Hubble parameter. That is, H = 100*hubble_h.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
label

	Label that will go on axis legends for this Model.

	Type

	string

	
last_file_to_analyze

	The last SAGE sub-file to be read. If sage_output_format is
sage_binary, files read must be labelled sage_data_path.XXX.
If sage_output_format is sage_hdf5, the file read will be
sage_data_path and the groups accessed will be Core_XXX. In both cases,
XXX represents the numbers in the range
[first_file_to_analyze, last_file_to_analyze] inclusive.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
num_gals_all_files

	Number of galaxies across all files. For HDF5 data formats, this represents
the number of galaxies across all Core_XXX sub-groups.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
num_sage_output_files

	The number of files that SAGE wrote. This will be equal to the number of
processors the SAGE ran with.

Notes

If sage_output_format is sage_hdf5, this attribute is not required.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
output_path

	Path to where some plots will be saved. Used for
plot_spatial_3d().

	Type

	string

	
parameter_dirpath

	The directory path to where the SAGE paramter file is located. This is only the base directory path
and does not include the name of the file itself.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
plot_toggles

	Specifies which plots should be created for this model. This will control which properties
should be calculated; e.g., if no stellar mass function is to be plotted, the stellar mass function will not be
computed.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]]

	
plots_that_need_smf

	Specifies the plot toggles that require the stellar mass function to be properly computed and
analyzed. For example, plotting the quiescent fraction of galaxies requires knowledge of the total number of
galaxies. The strings here must EXACTLY match the keys in plot_toggles.

	Type

	list of ints

	
properties

	The galaxy properties
stored across the input files and snapshots. These properties are updated within the respective
calc_<plot_toggle> functions.

The outside key is "snapshot_XX" where XX is the snapshot number for the property. The inner key is the
name of the proeprty (e.g., "SMF").

	Type

	dict [string, dict [string, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]] or dict[string, dict[string, float]

	
random_seed

	Specifies the seed used for the random number generator, used to select galaxies for plotting
purposes. If None, then uses default call to seed() [https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html#numpy.random.seed].

	Type

	Optional[int [https://docs.python.org/3/library/functions.html#int]]

	
redshifts

	Redshifts for this simulation.

	Type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
sSFRcut

	The specific star formation rate above which a galaxy is flagged as “star forming”. Units are log10.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
sage_data_path

	Path to the output data. If sage_output_format is
sage_binary, files read must be labelled sage_data_path.XXX.
If sage_output_format is sage_hdf5, the file read will be
sage_data_path and the groups accessed will be Core_XXX at snapshot
snapshot. In both cases, XXX represents the numbers in the range
[first_file_to_analyze, last_file_to_analyze] inclusive.

	Type

	string

	
sage_file

	The path to where the SAGE .ini file is located.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
sage_output_format

	The output format SAGE wrote in.
A specific Data Class (e.g., SageBinaryData
and SageHdf5Data) must be written and
used for each sage_output_format option. We refer to
Ingesting Custom Data for more information about adding your own Data Class to ingest
data.

	Type

	{"sage_binary", "sage_binary"}

	
sample_size

	Specifies the length of the properties attributes stored as 1-dimensional
ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]. These properties are initialized using
init_scatter_properties().

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
snapshot

	Specifies the snapshot to be read. If sage_output_format is
sage_hdf5, this specifies the HDF5 group to be read. Otherwise, if
sage_output_format is sage_binary, this attribute will be used to
index redshifts and generate the suffix for sage_data_path.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
volume

	Volume spanned by the trees analyzed by this model. This depends upon the
number of files processed, [:py:attr:`~first_file_to_analyze`, :py:attr:`~last_file_to_analyze`],
relative to the total number of files the simulation spans over,
num_sim_tree_files.

Notes

This is not necessarily box_size cubed. It is possible that this
model is only analysing a subset of files and hence the volume will be less.

	Type

	volume

sage_binary module

This module defines the SageBinaryData class. This class interfaces with the
Model class to read in binary data written by SAGE.
The value of sage_output_format is generally
sage_binary if it is to be read with this class.

If you wish to ingest data from your own flavour of SAGE, please open a Github issue, I plan to add this documentation
in future :)

Author: Jacob Seiler.

	
class sage_analysis.sage_binary.SageBinaryData(model: sage_analysis.model.Model, sage_file_to_read: str)

	Bases: sage_analysis.data_class.DataClass

Class intended to inteface with the Model class to
ingest the data written by SAGE. It includes methods for reading the output
galaxies, setting cosmology etc. It is specifically written for when
sage_output_format is sage_binary.

	
_check_for_file(model: sage_analysis.model.Model, file_num: int) → Optional[str]

	Checks to see if a file for the given file number exists. Importantly, we check assuming that the path given
in the SAGE parameter file is relative and absolute.

	Parameters

	file_num (int) – The file number that we’re checking for files.

	Returns

	If a file exists, the name of that file. Otherwise, if the file does not exist (using either relative or
absolute paths), then None.

	Return type

	fname or None

	
_get_galaxy_struct()

	Sets the numpy structured array for holding the galaxy data.

	
close_file(model: sage_analysis.model.Model)

	An empty method to ensure consistency with the HDF5 data class. This is empty because snapshots are saved over
different files by default in the binary format.

	
determine_num_gals(model: sage_analysis.model.Model, *args)

	Determines the number of galaxies in all files for this
Model.

	Parameters

	
	model (Model class) – The Model we’re reading data for.

	*args (Any) – Extra arguments to allow other data class to pass extra arguments to their version of
determine_num_gals.

	
determine_volume_analyzed(model: sage_analysis.model.Model) → float

	Determines the volume analyzed. This can be smaller than the total simulation box.

	Parameters

	model (Model instance) – The model that this data class is associated with.

	Returns

	volume – The numeric volume being processed during this run of the code in (Mpc/h)^3.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
read_gals(model: sage_analysis.model.Model, file_num: int, snapshot: int, pbar: Optional[tqdm.std.tqdm] = None, plot_galaxies: bool = False, debug: bool = False)

	Reads the galaxies of a model file at snapshot specified by
snapshot.

	Parameters

	
	model (Model class) – The Model we’re reading data for.

	file_num (int) – Suffix number of the file we’re reading.

	pbar (tqdm class instance, optional) – Bar showing the progress of galaxy reading. If None, progress bar will
not show.

	plot_galaxies (bool, optional) – If set, plots and saves the 3D distribution of galaxies for this file.

	debug (bool, optional) – If set, prints out extra useful debug information.

	Returns

	gals – The galaxies for this file.

	Return type

	numpy structured array with format given by :py:method:`~_get_galaxy_struct`

Notes

tqdm does not play nicely with printing to stdout. Hence we disable
the tqdm progress bar if debug=True.

	
read_sage_params(sage_file_path: str) → Dict[str, Any]

	Read the SAGE parameter file.

	Parameters

	sage_file_path (string) – Path to the SAGE parameter file.

	Returns

	model_dict – Dictionary containing the parameter names and their values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict] [str [https://docs.python.org/3/library/stdtypes.html#str], var]

	
update_snapshot_and_data_path(model: sage_analysis.model.Model, snapshot: int, use_absolute_path: bool = False)

	Updates the _sage_data_path to point to a new redshift file. Uses the
redshift array redshifts.

	Parameters

	
	snapshot (int) – Snapshot we’re updating _sage_data_path to
point to.

	use_absolute_path (bool) – If specified, will use the absolute path to the SAGE output data. Otherwise, will use the path that is
relative to the SAGE parameter file. This is hand because the SAGE parameter file can contain
either relative or absolute paths.

	
_abc_impl = <_abc_data object>

	

sage_hdf5 module

This module defines the SageHdf5Data class. This class interfaces with the
Model class to read in binary data written by SAGE.
The value of sage_output_format is generally
sage_hdf5 if it is to be read with this class.

If you wish to ingest data from your own flavour of SAGE, please open a Github issue, I plan to add this documentation
in future :)

Author: Jacob Seiler.

	
class sage_analysis.sage_hdf5.SageHdf5Data(model: sage_analysis.model.Model, sage_file_to_read: str)

	Bases: sage_analysis.data_class.DataClass

Class intended to inteface with the Model class to ingest the data written by
SAGE. It includes methods for reading the output galaxies, setting cosmology etc. It is specifically written
for when sage_output_format is sage_hdf5.

	
_check_model_compatibility(model: sage_analysis.model.Model, sage_dict: Optional[Dict[str, Any]]) → None

	Ensures that the attributes in the Model instance are compatible with the
variables read from the SAGE parameter file (if read at all).

	Parameters

	
	model (Model instance) – The model that this data class is associated with.

	sage_dict (optional, dict[str, Any]) – A dictionary containing all of the fields read from the SAGE parameter file.

Warning

	UserWarning

	Raised if the user initialized Model with a value of
num_sage_output_files that is different to the value specified in the
HDF5 file.

	
close_file(model)

	Closes the open HDF5 file.

	
determine_num_gals(model: sage_analysis.model.Model, snapshot: int, *args)

	Determines the number of galaxies in all cores for this model at the specified snapshot.

	Parameters

	
	model (Model class) – The Model we’re reading data for.

	snapshot (int) – The snapshot we’re analysing.

	*args (Any) – Extra arguments to allow other data class to pass extra arguments to their version of
determine_num_gals.

	
determine_volume_analyzed(model: sage_analysis.model.Model) → float

	Determines the volume analyzed. This can be smaller than the total simulation box.

	Parameters

	model (Model instance) – The model that this data class is associated with.

	Returns

	volume – The numeric volume being processed during this run of the code in (Mpc/h)^3.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
read_gals(model: sage_analysis.model.Model, core_num: int, snapshot: int, pbar: Optional[tqdm.std.tqdm] = None, plot_galaxies: bool = False, debug: bool = False) → Any

	Reads the galaxies of a single core at the specified
snapshot.

	Parameters

	
	model (Model class) – The Model we’re reading data for.

	core_num (Integer) – The core group we’re reading.

	pbar (tqdm class instance, optional) – Bar showing the progress of galaxy reading. If None, progress bar will
not show.

	plot_galaxies (Boolean, optional) – If set, plots and saves the 3D distribution of galaxies for this file.

	debug (Boolean, optional) – If set, prints out extra useful debug information.

	Returns

	gals – The galaxies for this file.

	Return type

	h5py group

Notes

tqdm does not play nicely with printing to stdout. Hence we disable
the tqdm progress bar if debug=True.

	
read_sage_params(sage_file_path: str) → Dict[str, Any]

	Read the SAGE parameter file.

	Parameters

	sage_file_path (string) – Path to the SAGE parameter file.

	Returns

	model_dict – Dictionary containing the parameter names and their values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict] [str [https://docs.python.org/3/library/stdtypes.html#str], var]

	
update_snapshot_and_data_path(model: sage_analysis.model.Model, snapshot: int)

	Updates the snapshot attribute to snapshot. As the HDF5 file contains all
snapshot information, we do not need to update the path to the output data. However, ensure that the file
itself is still open.

	
_abc_impl = <_abc_data object>

	

Ingesting Custom Data

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 The Semi-Analytic Galaxy Evolution (SAGE)

 		
 Introduction

 		
 Why Use SAGE?

 		
 Getting Started

 		
 Pre-Requisites

 		
 Downloading

 		
 Building

 		
 HDF5 Support

 		
 Example Usage

 		
 Plotting SAGE Results

 		
 Installation

 		
 Example Usage

 		
 Defining Custom Plot Toggles

 		
 Comprehensive API reference

 		
 sage_analysis package

 		
 Submodules

 		
 sage_analysis.model module

 		
 sage_analysis.sage_binary module

 		
 sage_analysis.sage_hdf5 module

_static/ajax-loader.gif

